详细说明
供应连云港连云区CRTS1铁路无砟轨道伸缩缝传力杆佛系卖家
传力杆交通荷载的影响
板长分别取 4. 0 、5. 0 、6. 0 m , 板厚 26 cm , 板模量 E c =30 GPa , 地基模量 Es =150 M Pa , 传力杆模量 210 GPa ,直径 32 mm ,计算传力杆与混凝土界面接触应力。结果表明 , 板长对传力杆与混凝土界面接触应力分布规律及*大接触应力值影响不大。因此,只对板长为 5. 0 m 情况时的传力杆与混凝土界面应力分布规律进行研究 。图 3 、4 分别为接缝面受荷板和未受荷板处传力杆与混凝土界面的*大主应力、*大剪应力和*大垂直应力分布。图 3(b) ~(d)中横轴表示传力杆与混凝土界面圆周的角度位置,0°(360°)表示传力杆底部,180°表示传力杆顶部,*大压应力发生在传力杆底部,*大剪应力发生在传力杆底部两侧,*大主应力和*大拉应力均发生在传力杆的两侧;对于受荷板 ,*大压应力、*大剪应力、*大拉应力均发生在传力杆顶部或底部, *大主应力发生在底部。应力分布云图可以更直观地了解应力沿圆周的分布规律。由此可见,在接缝面处传力杆周围混凝土高剪应力和高支承应力,容易导致与传力杆相接触的混凝土的挤碎和拉裂等破坏,增加传力杆松动量,降低传递荷载能力,甚至导致板边整体碎裂破坏。
传力杆结语
(1)在轮载以及轮载和温度变化共同作用下,传力杆与混凝土界面存在明显应力集中现象。接触应力集中现象发生在离接缝面0 ~8 cm 范围内,而考虑均匀降温作用时, 高拉应力和主应力发生在杆两端附近及接缝面附近。
(2)无论在正温度梯度还是负温度梯度作用下,*大主应力均接近材料的破坏极限, 从而容易在界面处形成初始裂缝和挤碎, 使传力杆松动量增大,降低传递荷载能力, 甚至出现传力杆周围混凝土的严重碎裂。
(3)为减小接触应力, 有必要改进传力杆装置,以避免出现传力杆与混凝土接触应力集中现象, 从而在路面使用寿命内保持传力杆的传递荷载效能,并避免接缝处混凝土板出现碎裂、断板等破坏现象。